1. Lesson: Language Basics
  2. Variables
    1. Naming
    2. Primitive Data Types
    3. Default Values
    4. Literals
    5. Using Underscore Characters in Numeric Literals
    6. Arrays
    7. Declaring a Variable to Refer to an Array
    8. Creating, Initializing, and Accessing an Array
    9. Copying Arrays
    10. Summary of Variables
    11. Questions and Exercises: Variables
  3. Expressions, Statements, and Blocks
    1. Expressions
    2. Statements
    3. Blocks
    4. Questions and Exercises: Expressions, Statements, and Blocks
  4. Control Flow Statements
    1. The if-then Statement
    2. The if-then-else Statement
    3. The switch Statement
    4. Using Strings in switch Statements
    5. The while and do-while Statements
    6. The for Statement
    7. The break Statement
    8. The continue Statement
    9. The return Statement
    10. Summary of Control Flow Statements
    11. Questions and Exercises: Control Flow Statements
  5. Lesson: Classes and Objects
    1. Classes
    2. Declaring Classes
    3. Declaring Member Variables
    4. Access Modifiers
    5. Types
    6. Variable Names
    7. Defining Methods
    8. Naming a Method
    9. Overloading Methods
    10. Providing Constructors for Your Classes
    11. Passing Information to a Method or a Constructor
    12. Parameter Types
    13. Arbitrary Number of Arguments
    14. Parameter Names
    15. Passing Primitive Data Type Arguments
    16. Passing Reference Data Type Arguments
    17. Objects
    18. Creating Objects
    19. Declaring a Variable to Refer to an Object
    20. Instantiating a Class
    21. Initializing an Object
    22. Using Objects
    23. Referencing an Object's Fields
    24. Calling an Object's Methods
    25. The Garbage Collector
    26. More on Classes
    27. Returning a Value from a Method
    28. Returning a Class or Interface
    29. Using the this Keyword
    30. Using this with a Field
    31. Using this with a Constructor
    32. Controlling Access to Members of a Class
    33. Understanding Instance and Class Members
    34. Class Variables
    35. Class Methods
    36. Constants
    37. The Bicycle Class
    38. Initializing Fields
    39. Static Initialization Blocks
    40. Initializing Instance Members
    41. Summary of Creating and Using Classes and Objects
    42. Questions and Exercises: Classes
    43. Questions and Exercises: Objects
  6. Nested Classes
    1. Why Use Nested Classes?
    2. Static Nested Classes
    3. Inner Classes
    4. Inner Class Example
    5. Local and Anonymous Inner Classes
    6. Modifiers
    7. Summary of Nested Classes
    8. Questions and Exercises: Nested Classes
  7. Enum Types
    1. Questions and Exercises: Enum Types
  8. Annotations
    1. Documentation
    2. Annotations Used by the Compiler
    3. Annotation Processing
    4. Questions and Exercises: Annotations
  9. Lesson: Interfaces and Inheritance
    1. Interfaces
    2. Interfaces in Java
    3. Interfaces as APIs
    4. Interfaces and Multiple Inheritance
    5. Defining an Interface
    6. The Interface Body
    7. Implementing an Interface
    8. A Sample Interface, Relatable
    9. Implementing the Relatable Interface

8.2.Annotations Used by the Compiler

There are three annotation types that are predefined by the language specification itself: @Deprecated, @Override, and @SuppressWarnings.
@Deprecated—the @Deprecated annotation indicates that the marked element is deprecated and should no longer be used. The compiler generates a warning whenever a program uses a method, class, or field with the @Deprecated annotation. When an element is deprecated, it should also be documented using the Javadoc @deprecated tag, as shown in the following example. The use of the “@” symbol in both Javadoc comments and in annotations is not coincidental—they are related conceptually. Also, note that the Javadoc tag starts with a lowercase “d” and the annotation starts with an uppercase “D”.

   // Javadoc comment follows
    /**
     * @deprecated
     * explanation of why it was deprecated
     */
    @Deprecated
    static void deprecatedMethod() { }
}

@Override—the @Override annotation informs the compiler that the element is meant to override an element declared in a superclass (overriding methods will be discussed in the the lesson titled “Interfaces and Inheritance”).

   // mark method as a superclass method
   // that has been overridden
   @Override 
   int overriddenMethod() { }

While it’s not required to use this annotation when overriding a method, it helps to prevent errors. If a method marked with @Override fails to correctly override a method in one of its superclasses, the compiler generates an error.
@SuppressWarnings—the @SuppressWarnings annotation tells the compiler to suppress specific warnings that it would otherwise generate. In the example below, a deprecated method is used and the compiler would normally generate a warning. In this case, however, the annotation causes the warning to be suppressed.

   // use a deprecated method and tell 
   // compiler not to generate a warning
   @SuppressWarnings("deprecation")
    void useDeprecatedMethod() {
        objectOne.deprecatedMethod(); //deprecation warning - suppressed
    }

Every compiler warning belongs to a category. The Java Language Specification lists two categories: “deprecation” and “unchecked.” The “unchecked” warning can occur when interfacing with legacy code written before the advent of generics (discussed in the lesson titled “Generics”). To suppress more than one category of warnings, use the following syntax:
@SuppressWarnings({“unchecked”, “deprecation”})

Yes No Suggest edit
Suggest Edit